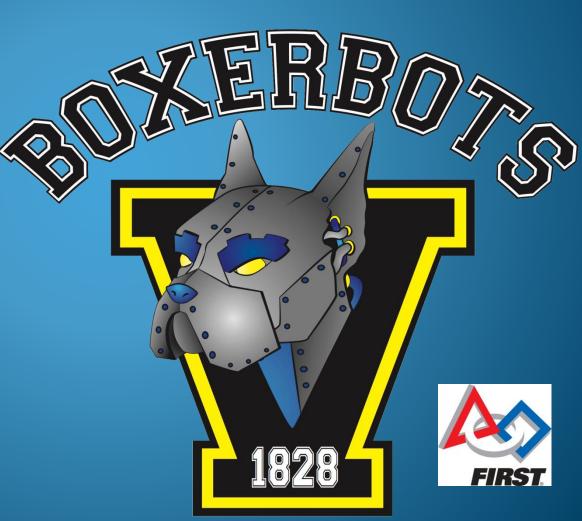
Stands for:


For

Inspiration and

Recognition of

Science and

Technology

Agenda

- About BoxerBots
 - Benefits
 - Commitment
 - Schedule
- 2024 FRC Season
- About *FIRST*

About 1828 BoxerBots

FIRST Robotics Competition Team 1828 – The BoxerBots

Founded in: 2005 by Don Adams

Leadership: 2 volunteer mentors, 1 alumni mentor

and 2 support volunteers

Sponsor: CATERPILLAR INC.

Supporters: AZ tax credits, VAHS, Vail Coffee Stop,

VUSD, and Parents & Friends of Team 1828

What we do

- We are a STEM (Science, Technology, Engineering, and Math) activity, except we perform this in a very accelerated, hands-on way.
- Pre-season is a time for training, where the students learn the skills they are going to need during the build season. This includes hand tools, power tools, and all associated safety.
- Once kick-off rolls around, robots are built from a common kit of parts purchased through *FIRST*, and typically weigh up to 120 lbs.

Sub-teams

- New Build
 - Combines build, fabrication and electrical
- Advanced Fabrication (Machining)
- Software Engineering (Programming)
- Mechanical Engineering (CAD design)
- Business
- Media

Safety

- In everything we do
- This is a hazardous work environment.
- Some of the tools we use are the mill, drill press, horizontal band saw, TIG welder, just to name a few.
- The robot may weigh up to 130 lbs, and may move at 20+ feet per second. That's a lot of momentum in a welded aluminum frame. We've had enough torque to push mentors across a carpeted floor.
- We teach the safety, it's the team member's responsibility to follow it, for everyone's sake.

What do the mentors do?

- We are here to
 - make sure the students are safe.
 - guide and advise the students.
 - train the students.
 - keep the students motivated.
 - handle travel arrangements.
 - watch the students succeed.

Do the adults get to play?

- No. The mentors do not touch the robot except in the rare cases that
 - we need to put more umph into it
 - Demonstrate a process for safety purposes
- We do not touch the awards submissions.
- We do not touch the business plans.
- We do not touch the programming.
- This is a 100% student designed, built, wired and programmed robot.

Benefits

What your student gets from this

- Your student has the potential to learn:
 - The value of teamwork and what it takes to interact with a team to develop a functional product.
 - What "Gracious Professionalism®" and "Coopertition®" is really all about.
 - To perform in a high-paced, technical environment.
 - Personal accomplishment and confidence.
 - Hands-on involvement in building a functional, competitive robot.
 - And, of course, technical skills

Scholarships

More than \$80 million in college scholarships

Over 750 scholarship opportunities

Over 150 scholarship providers

Commitment

Commitment

- This is a high-commitment team.
 - Training Will receive training in selected area during preseason, but they must participate.
 - Communication Stay up-to-date on team information and happenings through the many methods of communication. Primary is email. Calendar is shared through our website.
 - Time To learn the skills, and to employ those skills.
 - Investment There is a \$200 fee (cash, check, or tax credit) participation fee (due by 1 November)
 - Check memo line MUST state "1828 BoxerBots"
 - "Worlds" will be another \$500 a head (including mentors)

What we need from you

- We need you to support your team member in keeping up grades, making meetings, training, and build season.
- Communication this is a two-way process and we appreciate questions, concerns, notices, etc.
- We need you to support the team by providing meals according to the schedule. This meal is usually for about 20 people.
- Make sure the forms are signed and turned in.
- Make sure FRC Registration is complete.

Schedule

Pre-season schedule

During the pre-season we meet:

- Wednesdays from 4pm to 6pm
- Saturdays we meet from 8am to 12pm (or later depending on needs).
- It is possible some subteams will meet more often, independent of the rest of the team. Likewise, some may meet less often.
- We operate out of the VAHS campus, Room 218.
- This is the training time, in electronics, programming, build, advanced fabrication, design, etc. so it is important for everyone to make it as often as possible.

Build season schedule

During the build season we meet:

- Mon, Tue, Wed, Fri, 3:30pm to 8pm. Dinner is served between 5:30 and 6pm.
- Saturdays we meet from 8am to 2pm, sometimes later depending on the need of the build. Lunch should be served between 11am and 11:30am.
- Students are required a minimum of 72 quality hours to participate in the home regional, 122 quality hours to be eligible to participate in the away regional.
- During build season there are 176+ hours of opportunity.

2024 Season

2024 FIRST Robotics Competition

- Kick-off is January 6th, 2024, when the objective for this season's competition is announced.
 - Kit pick-up group will leave around 6 am from here.
 - The rest of us will meet here. We will be open at 8am
 - Objective for the day will be making sure we fully understand the game rules, play, and strategies.
 - Snacks and lunch will be provided.
- Jan & Feb make up build season
- Mar & Apr make up competition season

Build Season Timeline (draft)

- Jan 6th Kick-off. Understanding of game.
- Jan 11th Design finalized.
- Jan 8th Build begins. Mechanical, electrical, software.
- Jan 14th Electrical Board complete.
- Jan 14th Mechanical Primaries built.
- Jan 23rd Specialty sensors programmed.
- Jan 23rd Specialty sensors mounted.
- Feb 4th Mechanical specials built.
- Feb 18th 27th Troubleshooting design, drive team game practice.

Travel

- We try to travel to two regionals every year
- We are hoping to attend:
 - The Arizona North Regional in Flagstaff, AZ (NAU)
 - One out-of-state regional (to be selected next week)

Operating Budget (ROM)

- \$6,000 Registration fee (1st regional)
- \$3,000 Registration fee (2nd and 3rd regional, each)
- ~ \$4,500 for hotel fees (x2)
- ~ \$2,000 food (meals) (x2)
- ~ \$1,000 food (snacks & water)
- ~ \$1,200 travel fees
- \$3,000 in pre-season material
- \$4,000 in build-season material
- ~ \$3,000 Outreach Material
- World's ~ \$22,000 alone (not incl above)

~\$37,000

Back-up

FIRST History

Founded in: 1989

Headquartered in: Manchester, NH

Founder: Dean Kamen who invented the Segway and founded the DEKA Research & Development Corporation. Most notably working on a prosthetic arm in development for DARPA that should advance the quality of life for returning injured soldiers.

Supporters

More than 200,000 Volunteers make *FIRST* happen.

FIRST is supported by a network of more than 3,500 Sponsors, including corporations, educational and professional institutions, and individuals.

Programs

FIRST Robotics Competition (FRC) for Grades 9-12 The BoxerBots are 8-12

FIRST Tech Challenge (FTC) for Grades 7-12

For children ages 4-6, this playful introductory STEM program ignites their natural curiosity and builds their habits of learning with hands-on activities in the classroom and at home using LEGO® DUPLO® bricks.

In Explore, teams of students ages 6-10 focus on the fundamentals of engineering as they explore real-world problems, learn to design, and code and create unique solutions made with LEGO bricks and powered by LEGO® Education SPIKETM Essential or WeDo 2.0.

Friendly competition is at the heart of Challenge, as teams of students ages 9-16* engage in research, problem-solving, coding, and engineering - building and programming a LEGO robot that navigates the missions of a robot game.

*ages and grades vary by country

